References
Davenport, T., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Future Healthcare Journal, 6(2), 94–98. https://doi.org/10.7861/futurehosp.6-2-94
Lång, K., Josefsson, V., Larsson, A., Larsson, S., Högberg, C., Sartor, H., Hofvind, S., Andersson, I., & Rosso, A. (2023). Artificial intelligence-supported screen reading versus standard double reading in the Mammography Screening with Artificial Intelligence trial (MASAI): a clinical safety analysis of a randomised, controlled, non-inferiority, single-blinded, screening accuracy study. The Lancet Oncology, 24(8), 936–944. https://doi.org/10.1016/s1470-2045(23)00298-x
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
Medina, J. E., Annapragada, A. V., Lof, P., Short, S., Bartolomucci, A. L., Mathios, D., Koul, S., Niknafs, N., Noe, M., Foda, Z. H., Bruhm, D. C., Hruban, C., Vulpescu, N. A., Jung, E., Dua, R., Canzoniero, J. V., Cristiano, S., Adleff, V., Symecko, H., . . . Velculescu, V. E. (2024). Early detection of ovarian cancer using cell-free DNA fragmentomes and protein biomarkers. Cancer Discovery. https://doi.org/10.1158/2159-8290.cd-24-0393
Mostavi, M., Chiu, Y., Huang, Y., & Chen, Y. (2020). Convolutional neural network models for cancer type prediction based on gene expression. BMC Medical Genomics, 13(S5). https://doi.org/10.1186/s12920-020-0677-2
Placido, D., Yuan, B., Hjaltelin, J. X., Zheng, C., Haue, A. D., Chmura, P. J., Yuan, C., Kim, J., Umeton, R., Antell, G., Chowdhury, A., Franz, A., Brais, L., Andrews, E., Marks, D. S., Regev, A., Ayandeh, S., Brophy, M. T., V, N., DO, . . . Sander, C. (2023). A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories. Nature Medicine, 29(5), 1113–1122. https://doi.org/10.1038/s41591-023-02332-5